Int. J. Heat Mass Transfer. Vol. 18, p. 714. Pergamon Press 1975. Printed in Great Britain

REJOINDER

(Received 27 November 1974)

IN A LETTER to the editor dated 8th October 1974, Dembi comments on my paper [1]. I would like to give the following answer to Dembi's note:

It is correct as pointed out that equation (15) of [1] is correct only for n = m. The correct general expression for X should be as stated by Dembi.

$$X = \left[\frac{M_{L}^{*(1-0.5n)}}{M_{G}^{*(1-0.5m)}}\right] \cdot \left[\frac{\eta_{L}^{0.5n}}{\eta_{G}^{0.5m}}\right] \cdot \left[\frac{\rho_{L}}{\rho_{G}}\right]^{-0.5} \times \left[\frac{C_{L}}{C_{G}}\right]^{0.5} \cdot \left[\frac{\pi}{4}D\right]^{0.5(n-m)}$$

However, this matter does not affect the theoretical relationship between X and ϕ_G and X and $(1-\bar{\epsilon})$, presented in Fig. 2 and Fig. 3 of [1], as they are based on the assumption that n = m = 0.25.

Regarding the parameter U_G , given by equation (21) of [1],

this equation is based on the assumptions stating that "... the friction between the gas and the pipe wall as well as liquid surface is equal". The circumference U_G of the gas flow channel is therefore equal to the sum of the circular arc and the chord, as shown by the thick line in Fig. 1 of [1], giving

$$U_G = 2R \left\{ \arccos(1 - H/R) + \sqrt{[2H/R - (H/R)^2]} \right\} = 2R\tilde{U}_G$$

in accordance with equation (21) of [1]. The contention of Dembi that equation (21) is incorrect must therefore depend on a misunderstanding.

REFERENCE

 Th. Johannessen, A theoretical solution of the Lockhart and Martinelli flow model for calculating two-phase flow pressure drop and hold-up, *Int. J. Heat Mass Transfer* 15, 1443–1449 (1972).

TH. JOHANNESSEN

Int. J. Heat Mass Transfer. Vol. 18, p. 714. Pergamon Press 1975. Printed in Great Britain

ERRATUM

LLOYD H. BACK, Transonic laminar boundary layers with surface curvature, *Int. J. Heat Mass Transfer* **16**(9), 1745–1761 (1973).

Typographical corrections are indicated as follows:

- (a) p. 1746, Fig. 1 caption, v in second term in equation should read U.
- (b) p. 1747, p in first term of equation (1) should read ρ ; y

in numerator of second term on right side of equation (4) should read ∂ .

- (c) p. 1748, g in brackets of third term on left side of equation
 (12) should read g'.
- (d) p. 1749, equation (16), f_w^2 should read f_w^2 .
- (e) p. 1751, in equation for S the group $[(\gamma + 1)/2]^{\ddagger}$ in the denominator should read $[(\gamma 1)/2]$.
- (f) p. 1752, in fourth line in second column, "the t" should read "then".